
Layer Zero
StargateEthVault and RouterETH

June 17, 2022

by Ackee Blockchain

https://ackeeblockchain.com

Contents
1. Document Revisions. 2

2. Overview . 3

2.1. Ackee Blockchain . 3

2.2. Audit Methodology . 3

2.3. Review team. 4

2.4. Disclaimer . 4

3. Executive Summary . 5

4. System Overview . 6

4.1. Contracts. 6

4.2. Actors . 6

4.3. Trust model . 7

5. Vulnerabilities risk methodology . 8

5.1. Finding classification . 8

6. Findings. 10

M1: Usage of solc optimizer . 12

L1: Insufficient data validation in RouterETH . 13

W1: totalSupply() not guaranteed to be accurate . 14

W2: Renounce ownership . 16

I1: Public functions . 17

I2: Variables should be declared constant . 18

I3: Unused imports . 19

I4: Comments quality . 20

I5: Code quality . 21

7. Appendix A. 22

7.1. How to cite . 22

Blockchain audits | Blockchain security assessment

1 of 23

https://ackeeblockchain.com
https://ackeeblockchain.com

1. Document Revisions
1.0 Final report Jun 17, 2022

Blockchain audits | Blockchain security assessment

2 of 23

https://ackeeblockchain.com
https://ackeeblockchain.com

2. Overview
This document presents our findings in reviewed contracts.

2.1. Ackee Blockchain
Ackee Blockchain is an auditing company based in Prague, Czech Republic,

specialized in audits and security assessments. Our mission is to build a

stronger blockchain community by sharing knowledge – we run a free

certification course Summer School of Solidity and teach at the Czech

Technical University in Prague. Ackee Blockchain is backed by the largest VC

fund focused on blockchain and DeFi in Europe, Rockaway Blockchain Fund.

2.2. Audit Methodology
1. Technical specification/documentation - a brief overview of the system is

requested from the client and the scope of the audit is defined.

2. Tool-based analysis - deep check with automated Solidity analysis tools

and Slither is performed.

3. Manual code review - the code is checked line by line for common

vulnerabilities, code duplication, best practices and the code architecture

is reviewed.

4. Local deployment + hacking - the contracts are deployed locally and we

try to attack the system and break it.

5. Unit and fuzzy testing - run unit tests to ensure that the system works as

expected, potentially write missing unit or fuzzy tests.

Blockchain audits | Blockchain security assessment

3 of 23

https://ackeeblockchain.com
https://www.ackeeblockchain.com/summer-school-of-solidity
https://rbf.capital/
https://ackeeblockchain.com
https://ackeeblockchain.com

2.3. Review team

Member’s Name Position

Jan Šmolík Lead Auditor

Josef Gattermayer, Ph.D. Audit Supervisor

2.4. Disclaimer
We’ve put our best effort to find all vulnerabilities in the system, however our

findings shouldn’t be considered as a complete list of all existing issues. The

statements made in this document should not be interpreted as investment

or legal advice, nor should its authors be held accountable for decisions made

based on them.

Blockchain audits | Blockchain security assessment

4 of 23

https://ackeeblockchain.com
https://ackeeblockchain.com

3. Executive Summary
Layer Zero engaged Ackee Blockchain to conduct a security review of the

StargateEthVault and RouterETH contracts with a total time donation of three

engineering days. The review took place between June 14 and June 17, 2022.

The commit we worked on is the following:

• 8d0b07ad326c77d749b0f67001af7d86c56d9a64

StargateEthVault is a fork of WETH9.sol with minor changes and RouterETH is

just a wrapper around two functions of another Layer Zero’s contract, so

there is not much space for a critical problem. The review resulted in nine

findings, ranging from Informational to Medium severity.

Ackee Blockchain recommends Layer Zero to address all of the issues

discussed in this report and give us feedback, so that the report could be

updated.

Blockchain audits | Blockchain security assessment

5 of 23

https://ackeeblockchain.com
https://ackeeblockchain.com
https://ackeeblockchain.com
https://ackeeblockchain.com

4. System Overview
This section contains an outline of the audited contracts. Note that this is

meant for understandability purposes and does not replace project

documentation.

4.1. Contracts
Contracts we find important for better understanding are described in the

following section.

StargateEthVault.sol

StargateEthVault is a fork of the WETH9.sol contract (i.e., ERC-20 compliant

Wrapped Ether).

The difference is that it automatically unwraps to the native gas token on

transfers. The owner of the contract is able to disable this auto-unwrap on

transfers to certain addresses.

RouterETH.sol

RouterETH is a wrapper around the addLiquidity() and swap() functions of the

Layer Zero’s Router.sol.

4.2. Actors
This part describes actors of the system, their roles, and permissions.

StargateEthVault owner

The owner of the StargateEthVault contract. He can:

• transfer or renounce the ownership of the contract;

Blockchain audits | Blockchain security assessment

6 of 23

https://ackeeblockchain.com
https://ackeeblockchain.com

• call the setNoUnwrapTo() function to disable auto-unwrap on transfers to

certain addresses.

4.3. Trust model
There are no trust issues in these two contracts.

Blockchain audits | Blockchain security assessment

7 of 23

https://ackeeblockchain.com
https://ackeeblockchain.com

5. Vulnerabilities risk methodology
Each finding contains an Impact and Likelihood ratings.

If we have found a scenario in which the issue is exploitable, it will be

assigned an impact of High, Medium, or Low, based on the direness of the

consequences it has on the system. If we haven’t found a way, or the issue is

only exploitable given a change in configuration (such as deployment scripts,

compiler configuration, use of multi-signature wallets for owners, etc.) or

given a change in the codebase, then it will be assigned an impact rating of

Warning or Informational.

Low to High impact issues also have a Likelihood which measures the

probability of exploitability during runtime.

5.1. Finding classification
The full definitions are as follows:

Impact

High

Code that activates the issue will lead to undefined or catastrophic

consequences for the system.

Medium

Code that activates the issue will result in consequences of serious

substance.

Low

Code that activates the issue will have outcomes on the system that are

either recoverable or don’t jeopardize its regular functioning.

Blockchain audits | Blockchain security assessment

8 of 23

https://ackeeblockchain.com
https://ackeeblockchain.com

Warning

The issue cannot be exploited given the current code and/or configuration

(such as deployment scripts, compiler configuration, use of multi-

signature wallets for owners, etc.), but could be a security vulnerability if

these were to change slightly. If we haven’t found a way to exploit the

issue given the time constraints, it might be marked as "Warning" or higher,

based on our best estimate of whether it is currently exploitable.

Informational

The issue is on the border-line between code quality and security.

Examples include insufficient logging for critical operations. Another

example is that the issue would be security-related if code or

configuration (see above) was to change.

Likelihood

High

The issue is exploitable by virtually anyone under virtually any

circumstance.

Medium

Exploiting the issue currently requires non-trivial preconditions.

Low

Exploiting the issue requires strict preconditions.

Blockchain audits | Blockchain security assessment

9 of 23

https://ackeeblockchain.com
https://ackeeblockchain.com

6. Findings
This section contains the list of discovered findings. Unless overriden for

purposes of readability, each finding contains:

• a Description,

• an Exploit scenario, and

• a Recommendation

Many times, there might be multiple ways to solve or alleviate the issue, with

varying requirements in terms of the necessary changes to the codebase. In

that case, we will try to enumerate them all, making clear which solve the

underlying issue better (albeit possibly only with architectural changes) than

others.

Summary of Findings

Type Impact Likelihood

M1: Usage of solc optimizer
Compiler

configuration

High Low

L1: Insufficient data

validation in RouterETH

Data validation High Low

W1: totalSupply() not

guaranteed to be accurate

Code logic Warning N/A

W2: Renounce ownership Access controls Warning N/A

I1: Public functions Gas optimization Info N/A

I2: Variables should be

declared constant

Gas optimization Info N/A

I3: Unused imports Code quality Info N/A

I4: Comments quality Code quality Info N/A

Blockchain audits | Blockchain security assessment

10 of 23

https://ackeeblockchain.com
https://ackeeblockchain.com

Type Impact Likelihood

I5: Code quality Code quality Info N/A

Table 1. Table of Findings

Blockchain audits | Blockchain security assessment

11 of 23

https://ackeeblockchain.com
https://ackeeblockchain.com

M1: Usage of solc optimizer

Impact: High Likelihood: Low

Target: * Type: Compiler

configuration

Description

The project uses solc optimizer. Enabling solc optimizer may lead to

unexpected bugs.

The Solidity compiler was audited in November 2018, and the audit concluded

that the optimizer may not be safe.

Vulnerability scenario

A few months after deployment, a vulnerability is discovered in the optimizer.

As a result, it is possible to attack the protocol.

Recommendation

Until the solc optimizer undergoes more stringent security analysis, opt-out

using it. This will ensure the protocol is resilient to any existing bugs in the

optimizer.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

12 of 23

https://docs.soliditylang.org/en/latest/bugs.html
https://docs.soliditylang.org/en/latest/bugs.html
https://docs.google.com/document/d/1PZBSCBWBwd6AqWCgXqLnw8FNQ4HRurP5usrXuKuU0a0/edit#heading=h.l6fakub3mvnn
https://ackeeblockchain.com
https://ackeeblockchain.com

L1: Insufficient data validation in RouterETH

Impact: High Likelihood: Low

Target: RouterETH Type: Data validation

Description

RouterETH does not perform any data validation of the following passed

addresses in its constructor:

• _stargateEthVault

• _stargateRouter

Exploit scenario

An incorrect or malicious _stargateEthVault is passed to the constructor.

Instead of reverting, the call succeeds.

Recommendation

Add more stringent data validation for _stargateEthVault and _stargateRouter.

At least, this should include a zero-address check.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

13 of 23

https://ackeeblockchain.com
https://ackeeblockchain.com

W1: totalSupply() not guaranteed to be accurate

Impact: Warning Likelihood: N/A

Target: StargateEthVault Type: Code logic

Description

In StargateEthVault, the total supply of SGETH is measured by the amount of

ETH in the contract.

function totalSupply() public view returns (uint) {
 return address(this).balance;
 }

This makes sense, because each time someone deposits or sends ETH to the

contract, SGETH is added to his balance, and each time someone withdraws

ETH, his SGETH balance is reduced accordingly.

However, there are two cases where ether can exist in the contract without

having executed the deposit() function. Therefore, totalSupply() could

return a larger number than the actual sum of SGETH balances.

Self-destruct ether

Any contract is able to implement the selfdestruct() function, which removes

all bytecode from the contract address and sends all ether stored there to

the parameter-specified address. If this specified address is also a contract,

no functions (including the fallback()) get called. Therefore, the

selfdestruct() function can be used to forcibly send ether to this contract.

Pre-sent ether

Another way to get ether into the contract is to preload the contract address

with ether, because the contract address is deterministic.

Blockchain audits | Blockchain security assessment

14 of 23

https://ackeeblockchain.com
https://ackeeblockchain.com

Recommendation

If having an accurate totalSupply() is important, add some logic to track the

supply accurately (i.e., increasing the supply in deposit() and lowering it in

withdraw() and sometimes in transferFrom()). Otherwise, just keep this in

mind.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

15 of 23

https://ackeeblockchain.com
https://ackeeblockchain.com

W2: Renounce ownership

Impact: Warning Likelihood: N/A

Target: StargateEthVault Type: Access

controls

Description

The StargateEthVault is an Ownable contract. The owner of the contract can

call the setNoUnwrapTo() function. The ownership can be transferred and

renounced by the owner.

Exploit scenario

The owner accidentally calls renounceOwnership().

Recommendation

We recommend overriding the renounceOwnership() method to disable this

feature if it is not intended. Otherwise, ignore this issue.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

16 of 23

https://ackeeblockchain.com
https://ackeeblockchain.com

I1: Public functions

Impact: Informational Likelihood: N/A

Target: StargateEthVault Type: Gas

optimization

Description

The following functions are declared public even though they are not called

internally anywhere:

• withdraw()

• totalSupply()

• approve()

• transfer()

Recommendation

If functions are not called internally, they should be declared external. It

helps gas optimization because function arguments do not have to be copied

into memory.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

17 of 23

https://ackeeblockchain.com
https://ackeeblockchain.com

I2: Variables should be declared constant

Impact: Informational Likelihood: N/A

Target: StargateEthVault Type: Gas

optimization

Description

In StargateEthVault, the values of the following variables are fixed at

compile-time and can never change:

• name

• symbol

• decimals

Recommendation

Declare these variables constant. Compared to regular state variables, the gas

costs of constant variables are much lower.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

18 of 23

https://ackeeblockchain.com
https://ackeeblockchain.com

I3: Unused imports

Impact: Informational Likelihood: N/A

Target: RouterETH Type: Code quality

Description

In RouterETH, the following imports are unnecessary:

import "./openzeppelin/Ownable.sol";
import "./openzeppelin/IERC20.sol";

Recommendation

Remove these imports.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

19 of 23

https://ackeeblockchain.com
https://ackeeblockchain.com

I4: Comments quality

Impact: Informational Likelihood: N/A

Target: * Type: Code quality

Description

There are a few minor things in the comments that should be fixed.

setNoUnwrapTo comment

In StargateEthVault, the comment above the setNoUnwrapTo() function

reflects the old version of the function when it had two parameters. Now, you

only call setNoUnwrapTo(addr).

// if you do NOT wish to unwrap eth on transfers TO
// certain addresses, call `setNoUnwrapTo(addr, true)`

SGWETH

Also, in transferFrom(), there is a small mistake in the require error message.

The symbol is not SGWETH, but SGETH.

require(success, "SGWETH: failed to transfer");

WETH

In RouterETH, WETH is often used for referencing SGETH in the comments.

Recommendation

Consider fixing this so that the codebase is cleaner.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

20 of 23

https://ackeeblockchain.com
https://ackeeblockchain.com

I5: Code quality

Impact: Informational Likelihood: N/A

Target: RouterETH Type: Code quality

Description

1. The IStargateEthVault interface is declared in the RouterETH.sol file.

StargateEthVault does not implement this interface.

2. In RouterETH, there are two variables for communication with other

contracts:

• address public immutable stargateEthVault

• IStargateRouter public immutable stargateRouter

Recommendation

1. Declare IStargateEthVault in an independent file and import it both in

StargateEthVault and RouterETH. StargateEthVault should implement it

(keyword is). This reduces the space for human errors in future

adjustments.

2. Consider making the variables consistent for a cleaner codebase, that is:

• IStargateEthVault public immutable stargateEthVault

• IStargateRouter public immutable stargateRouter

or

• address public immutable stargateEthVault

• address public immutable stargateRouter

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

21 of 23

https://ackeeblockchain.com
https://ackeeblockchain.com

7. Appendix A

7.1. How to cite
Please cite this document as:

Ackee Blockchain, Layer Zero Stargate Router Eth, June 17, 2022.

If an individual issue is referenced, please use the following identifier:

ABCH-{project_identifer}-{finding_id},

where {project_identifier} for this project is LAYER-ZERO-STARGATE-ROUTER-ETH

and {finding_id} is the id which can be found in Summary of Findings. For

example, to cite I2 issue, we would use ABCH-LAYER-ZERO-STARGATE-ROUTER-ETH-

I2.

Blockchain audits | Blockchain security assessment

22 of 23

https://ackeeblockchain.com
https://ackeeblockchain.com
https://ackeeblockchain.com

Thank You
Ackee Blockchain a.s.

Prague, Czech Republic

hello@ackeeblockchain.com

h�ps://discord.gg/wpM77gR7en

	Layer Zero Stargate
	Contents
	1. Document Revisions
	2. Overview
	2.1. Ackee Blockchain
	2.2. Audit Methodology
	2.3. Review team
	2.4. Disclaimer

	3. Executive Summary
	4. System Overview
	4.1. Contracts
	4.2. Actors
	4.3. Trust model

	5. Vulnerabilities risk methodology
	5.1. Finding classification

	6. Findings
	Summary of Findings
	M1: Usage of solc optimizer
	L1: Insufficient data validation in RouterETH
	W1: totalSupply() not guaranteed to be accurate
	W2: Renounce ownership
	I1: Public functions
	I2: Variables should be declared constant
	I3: Unused imports
	I4: Comments quality
	I5: Code quality

	7. Appendix A
	7.1. How to cite

