
LayerZero
Stargate Fee Library V4

by Ackee Blockchain

June 28, 2022



Contents
1. Document Revisions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4

2. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5

2.1. Ackee Blockchain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5

2.2. Audit Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5

2.3. Review team. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6

2.4. Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6

3. Executive Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7

4. System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8

4.1. Contracts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8

4.2. Actors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11

4.3. Trust model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12

5. Vulnerabilities risk methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13

5.1. Finding classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13

6. Findings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15

M1: Unchecked cast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16

W1: Wrong version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17

W2: Renounce ownership . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18

W3: Commented-out code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19

W4: Solidity optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20

I1: Unnecessary variable allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21

I2: Missing documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22

Appendix A: How to cite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23

7. Appendix B: Fix Review. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24

M1F: Unchecked cast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25

W1F: Wrong version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26

W2F: Renounce ownership. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27

Blockchain audits | Blockchain security assessment

2 of 29

https://ackeeblockchain.com
https://ackeeblockchain.com


I1F: Unnecessary variable allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28

Blockchain audits | Blockchain security assessment

3 of 29

https://ackeeblockchain.com
https://ackeeblockchain.com


1. Document Revisions
1.0 Final report June 28, 2022

1.1 Fix-review July 8, 2022

Blockchain audits | Blockchain security assessment

4 of 29

https://ackeeblockchain.com
https://ackeeblockchain.com


2. Overview
This document presents our findings in reviewed contracts.

2.1. Ackee Blockchain
Ackee Blockchain is an auditing company based in Prague, Czech Republic,

specialized in audits and security assessments. Our mission is to build a

stronger blockchain community by sharing knowledge – we run a free

certification course Summer School of Solidity and teach at the Czech

Technical University in Prague. Ackee Blockchain is backed by the largest VC

fund focused on blockchain and DeFi in Europe, Rockaway Blockchain Fund.

2.2. Audit Methodology
1. Technical specification/documentation - a brief overview of the system is

requested from the client and the scope of the audit is defined.

2. Tool-based analysis - deep check with automated Solidity analysis tools

and Slither is performed.

3. Manual code review - the code is checked line by line for common

vulnerabilities, code duplication, best practices and the code architecture

is reviewed.

4. Local deployment + hacking - the contracts are deployed locally and we

try to attack the system and break it.

5. Unit and fuzzy testing - run unit tests to ensure that the system works as

expected, potentially write missing unit or fuzzy tests.

Blockchain audits | Blockchain security assessment

5 of 29

https://github.com/ackee-blockchain
https://www.ackeeblockchain.com/summer-school-of-solidity
https://rbf.capital/
https://ackeeblockchain.com
https://ackeeblockchain.com


2.3. Review team

Member’s Name Position

Štěpán Šonský Lead Auditor

Josef Gattermayer, Ph.D. Audit Supervisor

2.4. Disclaimer
We’ve put our best effort to find all vulnerabilities in the system, however our

findings shouldn’t be considered as a complete list of all existing issues. The

statements made in this document should not be interpreted as investment

or legal advice, nor should its authors be held accountable for decisions made

based on them.

Blockchain audits | Blockchain security assessment

6 of 29

https://ackeeblockchain.com
https://ackeeblockchain.com


3. Executive Summary
LayerZero engaged Ackee Blockchain to conduct a security review of the

Stargate Fee Library V4 (private repository) with a total time donation of 4

engineering days. The review took place between June 22 and June 28, 2022.

We began our review by using static analysis tools then we took a deep dive

into the logic of the contracts. The project uses private dependencies, and

we could not execute unit tests. Therefore we isolated the audited contract

StargateFeeLibraryV04.sol using Brownie and performed our custom

arithmetic tests. During the review, we paid particular attention to:

• ensuring the arithmetic of the system is correct,

• ensuring access controls are not too relaxed or too strict,

• looking for common issues such as data validation.

Our review resulted in 7 findings, ranging from Info to Medium severity. The

most severe one M1 can lead to an integer overflow if the contract owner

sets the depegThreshold value too high.

Ackee Blockchain recommends LayerZero:

• be aware of an integer overflow when casting uint256 to int256,

• remove commented-out code,

• create the NatSpec documentation.

Update July 8, 2022: LayerZero provided an updated codebase that

addresses some issues from this report. See Appendix B for a detailed

discussion of the exact status of each issue.

Blockchain audits | Blockchain security assessment

7 of 29

https://github.com/ackee-blockchain
https://ackeeblockchain.com
https://ackeeblockchain.com


4. System Overview
This section contains an outline of the audited contracts. Note that this is

meant for understandability purposes and does not replace project

documentation.

4.1. Contracts
Contracts we find important for better understanding are described in the

following section.

StargateFeeLibraryV04.sol

The Stargate Fee Library is used in the Stargate protocol to calculate pool

fees.

Addresses in the whitelist mapping are excluded from the protocol and LP

fees.

The modifier notDepeged, which is used in the getFees function, reverts the

function execution if the price from the pool’s price feed drops below the

depegThreshold value.

getFees

1. Gets the pool from the factory.

2. Gets the swap path from the pool.

3. Gets the token balance from the pool divided by the convert rate.

4. Gets the pool’s LP token total liquidity.

5. Calculates the equilibrium reward using the _getEqReward function.

6. Calculates the equilibrium fee using the _getEquilibriumFee function.

Blockchain audits | Blockchain security assessment

8 of 29

https://ackeeblockchain.com
https://ackeeblockchain.com


7. Return calculated values if the _from address is in the whitelist.

8. Otherwise calculates an additional protocol fee and LP fee.

_getEqReward

1. Returns 0 if _lpAsset ¬ _currentAssetSD.

2. Calculates poolDeficit by subtracting _currentAssetSD from _lpAsset.

3. Returns min(_rewardPoolSize * _amountSD / poolDeficit, _rewardPoolSize)

if assets in the pool are <75% of provided liquidity and amount is > 2% of

pool deficit.

4. Otherwise returns 0.

The following image shows our simulation of the _getEqReward behavior.

_getEquilibriumFee

1. Check if the balanceBefore is greater or equal than amountSD, reverts if not.

2. Calculates the balanceAfter by subtracting amountSD from balanceBefore.

Blockchain audits | Blockchain security assessment

9 of 29

https://ackeeblockchain.com
https://ackeeblockchain.com


3. Calculates safeZoneMin and safezoneMax from idealBalance using DELTA_1,

DELTA_2 and DENOMINATOR constants.

4. Depending if the afterBalance is inside the safe zone (between safeZoneMin

and safezoneMax), the function returns eqFee calculated using the

_getTrapezoidArea function.

The following image shows our simulation of the _getEquilibriumFee behavior.

_getProtocolAndLpFee

1. Calculates the protocolFee as _amountSD * PROTOCOL_FEE / DENOMINATOR -

_protocolSubsidy.

2. Calculates the lpFee as _amountSD * LP_FEE / DENOMINATOR

3. If there are active emmisions (allocPoint > 0) , lpFee is added to

protocolFee and set to 0.

4. If _lpAsset == 0 then protocolFee and lpFee are returned.

5. Otherwise the currentAssetNumerated is calculated as _currentAssetSD *

DENOMINATOR / _lpAsset.

Blockchain audits | Blockchain security assessment

10 of 29

https://ackeeblockchain.com
https://ackeeblockchain.com


6. If the currentAssetNumerated is lees than 50% then protocolFee and lpFee

are set to 0

7. If the currentAssetNumerated is between 50% and 60% and the transfer

does not drain the pathway below 60% of the ideal balance, then the

protocol fee and LP fee get reduced linearly.

_getTrapezoidArea

Helper function for the _getEquilibriumFee function. Introduced in Stargate

Fee Library V2 and did not change since then.

1. Checks if the balance is not out of bounds.

2. Calculates the xBoundWidth by subtracting xLowerBound from xUpperBound.

3. Calculates the yStart and yEnd.

4. Calculates the return value as yStart + yEnd * deltaX / 2 / DENOMINATOR.

4.2. Actors
This part describes actors of the system, their roles, and permissions.

Owner

The owner is an address that deploys the contract to the network and has

special privileges in the contract:

• Transfer the ownership to another address,

• renounce the ownership (set the owner to address(0)),

• edit the whitelist,

• set pool ID to LP ID mapping,

• set pool ID to price feed address,

Blockchain audits | Blockchain security assessment

11 of 29

https://ackeeblockchain.com
https://ackeeblockchain.com


• set depeg threshold.

User

User role means any address which can call external functions (external

addresses or contracts). The user can perform the following operations:

• get fees,

• get equilibrium reward,

• get equilibrium fee,

• get protocol and LP fee,

• get a trapezoid area (used in the _getEquilibriumFee function),

• get the library version.

4.3. Trust model
Users need to trust the owner regarding the special privileges listed above.

Blockchain audits | Blockchain security assessment

12 of 29

https://ackeeblockchain.com
https://ackeeblockchain.com


5. Vulnerabilities risk methodology
Each finding contains an Impact and Likelihood ratings.

If we have found a scenario in which the issue is exploitable, it will be

assigned an impact of High, Medium, or Low, based on the direness of the

consequences it has on the system. If we haven’t found a way, or the issue is

only exploitable given a change in configuration (such as deployment scripts,

compiler configuration, use of multi-signature wallets for owners, etc.) or

given a change in the codebase, then it will be assigned an impact rating of

Warning or Info.

Low to High impact issues also have a Likelihood which measures the

probability of exploitability during runtime.

5.1. Finding classification
The full definitions are as follows:

Impact

High

Code that activates the issue will lead to undefined or catastrophic

consequences for the system.

Medium

Code that activates the issue will result in consequences of serious

substance.

Low

Code that activates the issue will have outcomes on the system that are

either recoverable or don’t jeopardize its regular functioning.

Blockchain audits | Blockchain security assessment

13 of 29

https://ackeeblockchain.com
https://ackeeblockchain.com


Warning

The issue cannot be exploited given the current code and/or configuration

(such as deployment scripts, compiler configuration, use of multi-

signature wallets for owners, etc.), but could be a security vulnerability if

these were to change slightly. If we haven’t found a way to exploit the

issue given the time constraints, it might be marked as "Warning" or higher,

based on our best estimate of whether it is currently exploitable.

Info

The issue is on the border-line between code quality and security.

Examples include insufficient logging for critical operations. Another

example is that the issue would be security-related if code or

configuration (see above) was to change.

Likelihood

High

The issue is exploitable by virtually anyone under virtually any

circumstance.

Medium

Exploiting the issue currently requires non-trivial preconditions.

Low

Exploiting the issue requires strict preconditions.

Blockchain audits | Blockchain security assessment

14 of 29

https://ackeeblockchain.com
https://ackeeblockchain.com


6. Findings
This section contains the list of discovered findings. Unless overriden for

purposes of readability, each finding contains:

• a Description,

• an Exploit scenario, and

• a Recommendation

Many times, there might be multiple ways to solve or alleviate the issue, with

varying requirements in terms of the necessary changes to the codebase. In

that case, we will try to enumerate them all, making clear which solve the

underlying issue better (albeit possibly only with architectural changes) than

others.

Summary of Findings

Type Impact Likelihood

M1: Unchecked cast Overflow High Low

W1: Wrong version Typo Warning N/A

W2: Renounce ownership Access controls Warning N/A

W3: Commented-out code Code quality Warning N/A

W4: Solidity optimizer Compiler Warning N/A

I1: Unnecessary variable

allocation

Gas optimization Info N/A

I2: Missing documentation Documentation Info N/A

Table 1. Table of Findings

Blockchain audits | Blockchain security assessment

15 of 29

https://ackeeblockchain.com
https://ackeeblockchain.com


M1: Unchecked cast

Impact: High Likelihood: Low

Target: StargateFeeLibraryV04.sol Type: Overflow

Listing 1. Excerpt from

/contracts/libraries/StargateFeeLibraryV04.sol#L47-

L47[StargateFeeLibraryV04.notDepegged]

47             require(price >= int256(depegThreshold), "FeeLibrary:
   _srcPoolId is depegged");

Description

OpenZeppelin SafeMath library handles the integer overflow/underflow during

arithmetic operations but not during casting.

Exploit scenario

If the depegThreshold variable is greater than 2 ^ 256 / 2 - 1 (int256 max.

value), then the integer overflows during the casting, and the condition price

>= int256(depegThreshold) passes.

Recommendation

Use safety check after the casting.

int256 intThreshold = int256(depegThreshold);
require(intThreshold > 0, "depegThreshold overflow");

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

16 of 29

https://ackeeblockchain.com
https://ackeeblockchain.com


W1: Wrong version

Impact: Warning Likelihood: N/A

Target: StargateFeeLibraryV04.sol Type: Typo

Listing 2. Excerpt from

/contracts/libraries/StargateFeeLibraryV04.sol#L289-

L289[StargateFeeLibraryV04.getVersion]

289         return "2.0.0";

Description

getVersion function returns "2.0.0", but previous versions of the library

returns following values, which seems like a mistake in StargateFeeLibraryV04:

• StargateFeeLibraryV01 - "1.0.0"

• StargateFeeLibraryV02 - "2.0.0"

• StargateFeeLibraryV03 - "3.0.0"

Recommendation

Double-check if "2.0.0" is the intended value.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

17 of 29

https://ackeeblockchain.com
https://ackeeblockchain.com


W2: Renounce ownership

Impact: Warning Likelihood: N/A

Target: StargateFeeLibraryV04.sol Type: Access controls

Description

The OpenZeppelin Ownable pattern contains the renounceOwnership() function

which sets the owner address to address(0). This could lead to irreversible

damage to the contract. Thus, nobody will be able to become the owner

again and call functions with the onlyOwner() modifier.

Exploit scenario

This is not a directly exploitable issue but can be considered as an

unintended feature of the system. This function can be called accidentally or

intentionally by a malicious owner.

Recommendation

We recommend using a multisig wallet for the owner to avoid an accidental

renounceOwnership() call. This feature can also be disabled by overriding the

renounceOwnership() function in contracts inherited from the Ownable

contract.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

18 of 29

https://ackeeblockchain.com
https://ackeeblockchain.com


W3: Commented-out code

Impact: Warning Likelihood: N/A

Target: StargateFeeLibraryV04.sol Type: Code quality

Listing 3. Excerpt from

/contracts/libraries/StargateFeeLibraryV04.sol#L277-

L277[StargateFeeLibraryV04._getTrapezoidArea]

277         // xStartDrift = xUpperBound.sub(xStart);

Listing 4. Excerpt from

/contracts/libraries/StargateFeeLibraryV04.sol#L280-

L280[StargateFeeLibraryV04._getTrapezoidArea]

280         // xEndDrift = xUpperBound.sub(xEnd)

Description

The function _getTrapezoidArea contains commented-out code, which is not a

good practice.

Recommendation

Remove unused and commented-out parts of code.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

19 of 29

https://ackeeblockchain.com
https://ackeeblockchain.com


W4: Solidity optimizer

Impact: Warning Likelihood: N/A

Target: Type: Compiler

Description

The project uses solc optimizer. Enabling solc optimizer may lead to

unexpected bugs.

The Solidity compiler was audited in November 2018, and the audit concluded

that the optimizer may not be safe.

Recently the bug in the YUL optimizer has been discovered in Solidity 0.8.13

and fixed in 0.8.15.

Vulnerability scenario

A few months after deployment, a vulnerability is discovered in the optimizer.

As a result, it can be possible to attack the protocol.

Recommendation

If it is not necessary, avoid using the optimizer.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

20 of 29

https://docs.soliditylang.org/en/latest/bugs.html
https://docs.soliditylang.org/en/latest/bugs.html
https://docs.google.com/document/d/1PZBSCBWBwd6AqWCgXqLnw8FNQ4HRurP5usrXuKuU0a0/edit#heading=h.l6fakub3mvnn
https://blog.soliditylang.org/2022/06/15/inline-assembly-memory-side-effects-bug/
https://ackeeblockchain.com
https://ackeeblockchain.com


I1: Unnecessary variable allocation

Impact: Info Likelihood: N/A

Target: StargateFeeLibraryV04.sol Type: Gas optimization

Listing 5. Excerpt from

/contracts/libraries/StargateFeeLibraryV04.sol#L101-

L101[StargateFeeLibraryV04.getFees]

101         (uint256 eqFee, uint256 protocolSubsidy) = _getEquilibriumFee
    (chainPath.idealBalance, chainPath.balance, _amountSD);

Listing 6. Excerpt from

/contracts/libraries/StargateFeeLibraryV04.sol#L110-

L110[StargateFeeLibraryV04.getFees]

110         (uint256 protocolFee, uint256 lpFee) = _getProtocolAndLpFee
    (_amountSD, currentAssetSD, lpAsset, protocolSubsidy, srcPoolId,
    chainPath);

Description

Variable eqFee in the first snippet and protocolFee, lpFee in the second snippet

are allocated unnecessarily.

Recommendation

Assign eqFee, protocolFee, and lpFee values directly to the function’s return

value (Pool.SwapObj memory s).

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

21 of 29

https://ackeeblockchain.com
https://ackeeblockchain.com


I2: Missing documentation

Impact: Info Likelihood: N/A

Target: StargateFeeLibraryV04.sol Type: Documentation

Description

The code contains brief, understandable comments of important logic, but

detailed documentation is missing.

Recommendation

We strongly recommend covering the code by NatSpec. High-quality

documentation has to be an essential part of any professional project.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

22 of 29

https://ackeeblockchain.com
https://ackeeblockchain.com


Appendix A: How to cite
Please cite this document as:

Ackee Blockchain, LayerZero: Stargate Fee Library V4, June 28, 2022.

Blockchain audits | Blockchain security assessment

23 of 29

https://github.com/ackee-blockchain
https://ackeeblockchain.com
https://ackeeblockchain.com


7. Appendix B: Fix Review
On July 8, 2022, Ackee Blockchain reviewed LayerZero’s fixes for the issues

identified in this report. The following table summarizes the fix review. The

updated commit was e1f948be2497033d420a682dd64c5e8ed35e9793.

Fix log

Id Impact Likelihood Status

M1F: Unchecked cast High Low Fixed

W1F: Wrong version Warning N/A Fixed

W2F: Renounce ownership Warning N/A Fixed

W3: Commented-out code Warning N/A Acknowledged

W4: Solidity optimizer Warning N/A Acknowledged

I1F: Unnecessary variable

allocation

Info N/A Fixed

I2: Missing documentation Info N/A Acknowledged

Table 2. Table of fixes

Blockchain audits | Blockchain security assessment

24 of 29

https://github.com/ackee-blockchain
https://ackeeblockchain.com
https://ackeeblockchain.com


M1F: Unchecked cast

Impact: High Likelihood: Low

Target: M1: Unchecked cast Type: Overflow

Description

The issue has been fixed. The type of the state variable depegThreshold has

been changed from uint256 to int256.

Listing 7. Excerpt from

/contracts/libraries/StargateFeeLibraryV04.sol#L34-

L34[StargateFeeLibraryV04.notDepegged]

34     int256 public depegThreshold; // threshold for considering an asset
   depegged

Therefore, type casting in the notDepegged modifier is not necessary.

Listing 8. Excerpt from

/contracts/libraries/StargateFeeLibraryV04.sol#L47-

L47[StargateFeeLibraryV04.notDepegged]

47             require(price >= depegThreshold, "FeeLibrary: _srcPoolId is
   depegged");

Go back to Fix log

Blockchain audits | Blockchain security assessment

25 of 29

https://ackeeblockchain.com
https://ackeeblockchain.com


W1F: Wrong version

Impact: Warning Likelihood: N/A

Target: W1: Wrong version Type: Typo

Description

The issue had been fixed and the getVersion() function now returns "4.0.0".

Listing 9. Excerpt from

/contracts/libraries/StargateFeeLibraryV04.sol#L287-

L289[StargateFeeLibraryV04.notDepegged]

287     function getVersion() external pure override returns (string
    memory) {
288         return "4.0.0";
289     }

Go back to Fix log

Blockchain audits | Blockchain security assessment

26 of 29

https://ackeeblockchain.com
https://ackeeblockchain.com


W2F: Renounce ownership

Impact: Warning Likelihood: N/A

Target: W2: Renounce ownership Type: Access controls

Description

The issue has been fixed by overriding the renounceOwnership() function.

Listing 10. Excerpt from

/contracts/libraries/StargateFeeLibraryV04.sol#L292-

L292[StargateFeeLibraryV04.notDepegged]

292     function renounceOwnership() public override onlyOwner {}

Go back to Fix log

Blockchain audits | Blockchain security assessment

27 of 29

https://ackeeblockchain.com
https://ackeeblockchain.com


I1F: Unnecessary variable allocation

Impact: Info Likelihood: N/A

Target: I1: Unnecessary variable

allocation

Type: Gas optimization

Description

According to our recommendation, the issue has been fixed. Unnecessary

local variables have been removed, and return values are assigned directly

into the Pool.SwapObj.

Listing 11. Excerpt from

/contracts/libraries/StargateFeeLibraryV04.sol#L103-

L103[StargateFeeLibraryV04.notDepegged]

103         (s.eqFee, protocolSubsidy) = _getEquilibriumFee(chainPath
    .idealBalance, chainPath.balance, _amountSD);

Listing 12. Excerpt from

/contracts/libraries/StargateFeeLibraryV04.sol#L111-

L111[StargateFeeLibraryV04.notDepegged]

111         (s.protocolFee, s.lpFee) = _getProtocolAndLpFee(_amountSD,
    currentAssetSD, lpAsset, protocolSubsidy, srcPoolId, chainPath);

Go back to Fix log

Blockchain audits | Blockchain security assessment

28 of 29

https://ackeeblockchain.com
https://ackeeblockchain.com


 Blockchain  audit   |   Blockchain security assessment 

 Thank You 
 Ackee Blockchain a.s. 

 Prague, Czech Republic 

 hello@ackeeblockchain.com 

 h�ps://discord.gg/z4KDUbuPxq 

 1 

https://ackeeblockchain.com/

	LayerZero: Stargate Fee Library V4
	Contents
	1. Document Revisions
	2. Overview
	2.1. Ackee Blockchain
	2.2. Audit Methodology
	2.3. Review team
	2.4. Disclaimer

	3. Executive Summary
	4. System Overview
	4.1. Contracts
	4.2. Actors
	4.3. Trust model

	5. Vulnerabilities risk methodology
	5.1. Finding classification

	6. Findings
	M1: Unchecked cast
	W1: Wrong version
	W2: Renounce ownership
	W3: Commented-out code
	W4: Solidity optimizer
	I1: Unnecessary variable allocation
	I2: Missing documentation

	Appendix A: How to cite
	7. Appendix B: Fix Review
	M1F: Unchecked cast
	W1F: Wrong version
	W2F: Renounce ownership
	I1F: Unnecessary variable allocation


