
LayerZero
LPStakingTime.sol, WidgetSwap.sol

by Ackee Blockchain

July 12, 2022

Contents
1. Document Revisions. 2

2. Overview . 3

2.1. Ackee Blockchain . 3

2.2. Audit Methodology . 3

2.3. Review team. 4

2.4. Disclaimer . 4

3. Executive Summary . 5

4. System Overview . 7

4.1. Contracts. 7

4.2. Actors. 7

4.3. Trust model . 8

5. Vulnerabilities risk methodology . 9

5.1. Finding classification . 9

6. Findings. 12

M1: Unchecked transfer . 13

W1: Floating pragma . 15

W2: Lack of events . 16

I1: Use immutable instead of constant . 17

I2: Public functions without internal calls . 18

Appendix A: How to cite . 19

Blockchain audits | Blockchain security assessment

1 of 20

https://ackeeblockchain.com
https://ackeeblockchain.com

1. Document Revisions
1.0 Final report 12 July 2022

Blockchain audits | Blockchain security assessment

2 of 20

https://ackeeblockchain.com
https://ackeeblockchain.com

2. Overview
This document presents our findings in reviewed contracts.

2.1. Ackee Blockchain
Ackee Blockchain is an auditing company based in Prague, Czech Republic,

specialized in audits and security assessments. Our mission is to build a

stronger blockchain community by sharing knowledge – we run a free

certification course Summer School of Solidity and teach at the Czech

Technical University in Prague. Ackee Blockchain is backed by the largest VC

fund focused on blockchain and DeFi in Europe, Rockaway Blockchain Fund.

2.2. Audit Methodology
1. Technical specification/documentation - a brief overview of the system is

requested from the client and the scope of the audit is defined.

2. Tool-based analysis - deep check with automated Solidity analysis tools

and Slither is performed.

3. Manual code review - the code is checked line by line for common

vulnerabilities, code duplication, best practices and the code architecture

is reviewed.

4. Local deployment + hacking - the contracts are deployed locally and we

try to attack the system and break it.

5. Unit and fuzzy testing - run unit tests to ensure that the system works as

expected, potentially write missing unit or fuzzy tests.

Blockchain audits | Blockchain security assessment

3 of 20

https://github.com/ackee-blockchain
https://www.ackeeblockchain.com/summer-school-of-solidity
https://rbf.capital/
https://ackeeblockchain.com
https://ackeeblockchain.com

2.3. Review team

Member’s Name Position

Lukáš Böhm Lead Auditor

Štěpán Šonský Auditor

Josef Gattermayer, Ph.D. Audit Supervisor

2.4. Disclaimer
We’ve put our best effort to find all vulnerabilities in the system, however our

findings shouldn’t be considered as a complete list of all existing issues. The

statements made in this document should not be interpreted as investment

or legal advice, nor should its authors be held accountable for decisions made

based on them.

Blockchain audits | Blockchain security assessment

4 of 20

https://ackeeblockchain.com
https://ackeeblockchain.com

3. Executive Summary
Layer-zero engaged Ackee Blockchain to perform a security review of the two

separate contracts with a total time donation of 4 engineering days in a

period between June 30 and July 8, 2022. The lead auditor was Lukáš Böhm.

The audit has been performed on the following commits:

• WidgetSwap.sol: 8938c7b

• LPStakingTime.sol: 220b949

We began our review using static analysis tools, namely slither and the solc

compiler. This yielded several code quality improvements, such as I2: Public

functions without internal calls. We then took a deep dive into the logic of

the contracts. During the review, we paid particular attention to:

• ensuring the arithmetic of the system is correct,

• detecting possible reentrancies in the code,

• ensuring access controls are not too relaxed or too strict,

• looking for common issues such as data validation.

Our review resulted in 5 findings, ranging from Info to Medium severity.

The code quality is excellent, as with the previous Layer Zero audits. The

code follows Solidity best practices and is well readable. The scope of the

security review was two separate contracts for which LayerZero team

provided a short description. Contracts contain partial NatSpec in-code

documentation.

Ackee Blockchain recommends Layer-zero:

• adding complete NatSpec in-code documentation,

Blockchain audits | Blockchain security assessment

5 of 20

https://ackeeblockchain.com
https://ackeeblockchain.com

• log all contract’s state changes,

• address all other reported issues.

Blockchain audits | Blockchain security assessment

6 of 20

https://ackeeblockchain.com
https://ackeeblockchain.com

4. System Overview
This section contains an outline of the audited contracts. Note that this is for

understandability purposes and does not replace project documentation.

4.1. Contracts
Contracts we find essential for better understanding are described in the

following section.

WidgetSwap.sol

The contract allows swapping tokens or ETH. In ETH swap function swapETH,

internal function _getAndPayWidgetFeeETH is called, where fee calculation is

happening and then sending fees to the fee collector. swapETH execution

continues with actual swap on stargateRouterETH.

Similar logic is used in the swapTokens function for swapping the tokens. The

fee is calculated in _getAndPayWidgetFee, where the tokens are sent to the

contract, the fee is paid, and stargateRouter is approved to make actual

swaps.

LPStakingTime.sol

The contract allows to stack LPToken. While depositing or withdrawing,

LPToken user gets eToken. The amount of eToken is calculated concerning

the last withdrawal time. The emergencyWithdraw is used for fast withdrawal

without caring about rewards. The contract is a fork of LPStaking.sol. Instead

of block.number, block.timestamp is used for compatibility with Optimism chain.

4.2. Actors
This part describes the system’s actors, roles, and permissions.

Blockchain audits | Blockchain security assessment

7 of 20

https://ackeeblockchain.com
https://ackeeblockchain.com

Owner

In LPStaking contract, the owner can add new pools with LP tokens, set

allocation points for a given pool, and set eToken earned per second. These

operations may change the contract’s state.

User

In WidgetSwap contract, a user can wrap stargate transfers that charge their

own fee on top of LayerZero’s Stargate.

In LPStakingTime contract, a user can deposit and withdraw to a specific pool

and check the pending reward.

4.3. Trust model
Users have to trust the Owner of LPStakingTime contract.

Blockchain audits | Blockchain security assessment

8 of 20

https://ackeeblockchain.com
https://ackeeblockchain.com

5. Vulnerabilities risk methodology
A Severity rating of each finding is determined as a synthesis of two sub-

ratings: Impact and Likelihood. It ranges from Informational to Critical.

If we have found a scenario in which an issue is exploitable, it will be assigned

an impact rating of High, Medium, or Low, based on the direness of the

consequences it has on the system. If we haven’t found a way, or the issue is

only exploitable given a change in configuration (such as deployment scripts,

compiler configuration, use of multi-signature wallets for owners, etc.) or

given a change in the codebase, then it will be assigned an impact rating of

Warning or Info.

Low to High impact issues also have a Likelihood which measures the

probability of exploitability during runtime.

5.1. Finding classification
The full definitions are as follows:

Severity

Severity Impact Likelihood

Informational Informational N/A

Warning Warning N/A

Low Low Low

Medium Low Medium

Medium Low High

Medium Medium Medium

High Medium High

Medium High Low

Blockchain audits | Blockchain security assessment

9 of 20

https://ackeeblockchain.com
https://ackeeblockchain.com

Severity Impact Likelihood

High High Medium

Critical High High

Table 1. Severity of findings

Impact

High

Code that activates the issue will lead to undefined or catastrophic

consequences for the system.

Medium

Code that activates the issue will result in consequences of serious

substance.

Low

Code that activates the issue will have outcomes on the system that are

either recoverable or don’t jeopardize its regular functioning.

Warning

The issue cannot be exploited given the current code and/or configuration

(such as deployment scripts, compiler configuration, use of multi-

signature wallets for owners, etc.), but could be a security vulnerability if

these were to change slightly. If we haven’t found a way to exploit the

issue given the time constraints, it might be marked as "Warning" or higher,

based on our best estimate of whether it is currently exploitable.

Info

The issue is on the border-line between code quality and security.

Examples include insufficient logging for critical operations. Another

example is that the issue would be security-related if code or

Blockchain audits | Blockchain security assessment

10 of 20

https://ackeeblockchain.com
https://ackeeblockchain.com

configuration (see above) was to change.

Likelihood

High

The issue is exploitable by virtually anyone under virtually any

circumstance.

Medium

Exploiting the issue currently requires non-trivial preconditions.

Low

Exploiting the issue requires strict preconditions.

Blockchain audits | Blockchain security assessment

11 of 20

https://ackeeblockchain.com
https://ackeeblockchain.com

6. Findings
This section contains the list of discovered findings. Unless overriden for

purposes of readability, each finding contains:

• a Description,

• an Exploit scenario, and

• a Recommendation

Many times, there might be multiple ways to solve or alleviate the issue, with

varying requirements in terms of the necessary changes to the codebase. In

that case, we will try to enumerate them all, making clear which solve the

underlying issue better (albeit possibly only with architectural changes) than

others.

Summary of Findings

Severity Impact Likelihood

M1: Unchecked transfer Medium High Low

W1: Floating pragma Warning Warning N/A

W2: Lack of events Warning Warning N/A

I1: Use immutable instead of

constant

Info Info N/A

I2: Public functions without

internal calls

Info Info N/A

Table 2. Table of Findings

Blockchain audits | Blockchain security assessment

12 of 20

https://ackeeblockchain.com
https://ackeeblockchain.com

M1: Unchecked transfer

Impact: High Likelihood: Low

Target: {WidgetSwap.sol} Type: Data validation

Description

_getAndPayWidgetFee function for getting and paying Widget fee uses

transferFrom function of ERC20 token from user to WidgetSwap contract and

then transfer function to the fee collector contract. ERC20 token is specific

for a defined pool.

 IERC20(token).transferFrom(msg.sender, address(this), _amountLD);

 IERC20(token).transfer(_feeObj.feeCollector, widgetFee);

SafeERC20 helper checks the boolean return values of ERC20 operations and

reverts the transaction if they fail. At the same time, it allows supporting

some non-standard ERC20 tokens that do not have boolean return values.

If ERC20 token of the defined pool is a non-standard token and the contract

does not use SafeERC20, nor does it appropriately handle the case of tokens

returning false (rather than reverting) on failure conditions (such as

insufficient allowance), it may lead to unexpected behavior.

Vulnerability scenario

For example, the transfer function used to move tokens to the fee collector

may fail for whatever reason internal to the token at hand, and the failure is

missed. As a result, the tokens are not sent and stay in the contract.

If ERC20 tokens of the pools are not non-compliant, the standard transfer

works correctly.

Blockchain audits | Blockchain security assessment

13 of 20

https://ackeeblockchain.com
https://ackeeblockchain.com

Recommendation

Short term, make sure whether non-compliant tokens are used or not. If they

are, use SafeERC20 wrapper.

Long term, always use SafeERC20 when interacting with external tokens. This

will ensure the maximum support range for variously-behaving ERC20 tokens.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

14 of 20

https://ackeeblockchain.com
https://ackeeblockchain.com

W1: Floating pragma

Impact: Warning Likelihood: N/A

Target: {WidgetSwap.sol} Type: Compiler

configuration

Description

The project uses solidity floating pragma: ^0.8.4.

Vulnerability scenario

A mistake in deployment can cause a version mismatch and thus an

unexpected bug.

Recommendation

Stick to one version and lock the pragma in all contracts. More information

can be found in: swcregistry

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

15 of 20

https://swcregistry.io/docs/SWC-103
https://ackeeblockchain.com
https://ackeeblockchain.com

W2: Lack of events

Impact: Warning Likelihood: N/A

Target: {LPStakingTime.sol} Type: Logging

Description

LPStakingTime contract logs only Deposit, Withdraw and EmergencyWithdraw

events. Functions set, add and setETokenPerSecond lacks of emits, although

they make changes to the contract’s state and arithmetics.

Recommendation

Log any values that on-chain and off-chain observers might be interested in.

This ensures the maximum transparency of the protocol to its users,

developers, and other stakeholders.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

16 of 20

https://ackeeblockchain.com
https://ackeeblockchain.com

I1: Use immutable instead of constant

Impact: Info Likelihood: N/A

Target: {WidgetSwap.sol} Type: Gas optimization

Description

Variable TENTH_BPS_DENOMINATOR is immutable, but its value is not assigned in

the constructor.

For constant variables, the value has to be fixed at compile time, while for

immutable, it can still be assigned at construction time. For these values, 32

bytes are reserved. Due to this, constant values can sometimes be cheaper

than immutable values.

Recommendation

Use constant keyword for state variables that are not assigned in the

constructor.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

17 of 20

https://ackeeblockchain.com
https://ackeeblockchain.com

I2: Public functions without internal calls

Impact: Info Likelihood: N/A

Target: {LPStakingTime.sol} Type: Gas optimization

Description

Some functions are declared public even though they are not called internally

anywhere.

 function add(uint256 _allocPoint, IERC20 _lpToken) public onlyOwner {}

 function set(uint256 _pid, uint256 _allocPoint) public onlyOwner {}

 function deposit(uint256 _pid, uint256 _amount) public {}

 function withdraw(uint256 _pid, uint256 _amount) public {}

 function emergencyWithdraw(uint256 _pid) public {}

Recommendation

If functions are not called internally, they should be declared as external. It

helps gas optimization because function arguments do not have to be copied

into memory.

Go back to Findings Summary

Blockchain audits | Blockchain security assessment

18 of 20

https://ackeeblockchain.com
https://ackeeblockchain.com

Appendix A: How to cite
Please cite this document as:

Ackee Blockchain, LayerZero: LPStakingTime.sol, WidgetSwap.sol, July 12,

2022.

Blockchain audits | Blockchain security assessment

19 of 20

https://github.com/ackee-blockchain
https://ackeeblockchain.com
https://ackeeblockchain.com

 Blockchain audit | Blockchain security assessment

 Thank You
 Ackee Blockchain a.s.

 Prague, Czech Republic

 hello@ackeeblockchain.com

 h�ps://discord.gg/z4KDUbuPxq

 1

https://ackeeblockchain.com/

	LayerZero: LPStakingTime.sol, WidgetSwap.sol
	Contents
	1. Document Revisions
	2. Overview
	2.1. Ackee Blockchain
	2.2. Audit Methodology
	2.3. Review team
	2.4. Disclaimer

	3. Executive Summary
	4. System Overview
	4.1. Contracts
	4.2. Actors
	4.3. Trust model

	5. Vulnerabilities risk methodology
	5.1. Finding classification

	6. Findings
	M1: Unchecked transfer
	W1: Floating pragma
	W2: Lack of events
	I1: Use immutable instead of constant
	I2: Public functions without internal calls

	Appendix A: How to cite

