
LayerZero
Stargate DAO / Voting Escrow

Audit

29 March 2022

by Ackee Blockchain

https://ackeeblockchain.com

Blockchain audit | Blockchain security assessment

Contents

1. Document Revisions 2
2. Overview 3

2.1 Ackee Blockchain 3
2.2 Audit Methodology 3
2.3 Review team 4
2.4 Disclaimer 4

3. Executive Summary 5
4. System Overview 6

4.1 Contracts 6
4.2 Actors 6
4.3 Trust model 7

5. Vulnerabilities risk methodology 8
5.1 Finding classification 8

6. Findings 9
W1 - Integer casting overflow 11
I1 - Binary search code duplication 12
I2 - Function naming convention 13
I3 - Constant naming convention 14
I4 - Signed integer amount 15

1

https://ackeeblockchain.com

Blockchain audit | Blockchain security assessment

1. Document Revisions

Revision Date Description

1.0 29 Mar 2022 Initial revision

2

https://ackeeblockchain.com

Blockchain audit | Blockchain security assessment

2. Overview
This document presents our findings in reviewed contracts.

2.1 Ackee Blockchain
Ackee Blockchain is an auditing company based in Prague, Czech Republic,
specialized in audits and security assessments. Our mission is to build a stronger
blockchain community by sharing knowledge – we run a free certification course
Summer School of Solidity and teach at the Czech Technical University in Prague.
Ackee Blockchain is backed by the largest VC fund focused on blockchain and DeFi
in Europe, Rockaway Blockchain Fund.

2.2 Audit Methodology

1. Technical specification/documentation - a brief overview of the system is

requested from the client and the scope of the audit is defined.

2. Tool-based analysis - deep check with automated Solidity analysis tools and

Slither is performed.

3. Manual code review - the code is checked line by line for common

vulnerabilities, code duplication, best practices. The code architecture is

reviewed.

4. Local deployment + hacking - contracts are deployed locally and we try to

a�ack the system and break it.

5. Unit testing - run unit tests to ensure that the system works as expected.

Potentially we write our own unit tests for specific suspicious scenarios.

3

https://ackeeblockchain.com
https://ackeeblockchain.com
https://www.ackeeblockchain.com/summer-school-of-solidity
https://rbf.capital/

Blockchain audit | Blockchain security assessment

2.3 Review team

Member’s Name Position

Štěpán Šonský Lead Auditor

Lukáš Böhm Auditor

Josef Ga�ermayer, Ph.D. Audit Supervisor

2.4 Disclaimer
We have put our best effort to find all vulnerabilities in the system. However, our
findings should not be considered as a complete list of all existing issues. The
statements made in this document should not be interpreted as investment
or legal advice, nor should its authors be held accountable for decisions made
based on them.

4

https://ackeeblockchain.com

Blockchain audit | Blockchain security assessment

3. Executive Summary
LayerZero engaged Ackee Blockchain to conduct a security review of Voting Escrow
protocol with a total time donation of 6 engineering days.

The scope included the following repository with a given commit:

● Private repository
● ccd5793659dc2cc2dc29ad6bfeb1289963cf0258

We began our review using static analysis tools and then took a deep dive
into the logic of the contracts. During the review, we paid particular a�ention
to:

● Checking if nobody can exploit the protocol.
● Ensuring access controls are not too weak.
● Validating the math model.
● Checking the code quality and Solidity best practices.
● Looking for common issues such as data validation.

Our review resulted in 5 findings, mainly informational regarding the code quality
and one warning. During typecasting, integer overflow usually leads to high impact
issues. But in this case we’ve identified the likelihood close to zero, so the final
classification is the warning.

Ackee Blockchain recommends LayerZero to:

● Be aware of integer overflow during the typecasting.
● Refactor the code to avoid duplications.
● Follow the Solidity naming conventions.

5

https://ackeeblockchain.com

Blockchain audit | Blockchain security assessment

4. System Overview
This section contains an outline of the audited contracts. Note that this is
meant for understandability purposes and does not replace project
documentation.

4.1 Contracts
Both contracts are almost the exact fork of the well-known vyper contract by
Curvefi. Few logic differences come from Solidity x Vyper language syntax. Both
contracts properly uses ReentrancyGuard on external functions which change the
contract state.

VotingEscrow
The contract contains two custom modifiers. Modifier onlyUserOrWhitelist for
secure function accessibility and notUnlocked for handling locked/unlocked
contract’s state. This state is unique for VotingEscrow, just like whitelist
management. The major part of the logic is located in the private _checkpoint

function, where Curve’s mathematical formulas calculate the voting power of a
specific user which is changing during the locking period (max 3 years). A user’s
veSTG balance decays linearly as the remaining time until the STG unlock decreases.

sVotingEscrow
The contract is a slightly modified version of VotingEscrow contract. It does not
contain the token, so transfers and has a different trust model architecture. Instead
of users and whitelisted contracts, only the contract owner has the ability to call
specific functions.

4.2 Actors

Owner / LayerZero
The owner deploys contracts to the network and has extra privileges in contracts.
The owner can call specific functions and modify the whitelist in case of the
VotingEscrow contract.

VotingEscrow:
● add_to_whitelist()
● remove_from_whitelist()
● unlock()

sVotingEscrow:
● create_lock_for()

6

https://ackeeblockchain.com
https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/VotingEscrow.vy
https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/VotingEscrow.vy

Blockchain audit | Blockchain security assessment

● increase_amount_for()
● increase_unlock_time_for()
● withdraw_for()

User
This role means any external address in the network which can interact with the
protocol.

VotingEscrow:
● Read public/external contract state (user’s slope, point history, locked end,

balances, supply)
● checkpoint()
● deposit_for()
● create_lock()
● increase_amount()
● increase_unlock_time()
● increase_amount_and_time()
● withdraw()

sVotingEscrow:
● Read public/external contract state (user’s slope, point history, locked end,

balances, supply)

Controller
The controller role is defined in the VotingEscrow, but it’s unused in the contract
itself. Only the previous controller can set the new one using the
changeController() function.

Whitelisted contract
In VotingEscrow contract, whitelisted contracts has the same privileges to interact
with the contract as users.

4.3 Trust model
While in sVotingEscrow onlyOwner modifier is used in critical functions,
VotingEscrow contains a white-list mapping that enables selected contracts to
call specific functions. However, the contract owner can modify the whitelist. From
our perspective the trust model is well designed and the owner is not overpowered.
Only whitelisted contracts have to trust the owner in terms of removing themselves
from the whitelist.

7

https://ackeeblockchain.com

Blockchain audit | Blockchain security assessment

5. Vulnerabilities risk methodology
Each finding contains an Impact and Likelihood ratings.

If we have found a scenario in which the issue is exploitable, it will be
assigned an impact of High, Medium, or Low, based on the direness of the
consequences it has on the system. If we have not found a way, or the issue is
only exploitable given a change in configuration (such as deployment scripts,
compiler configuration, use of multi-signature wallets for owners, etc.) or
given a change in the codebase, then it will be assigned an impact rating of
Warning or Informational.

Low to High impact issues also have a Likelihood that measures the
probability of exploitability during runtime.

5.1 Finding classification
The complete definitions are as follows:

Impact

High
Conditions that activate the issue will lead to undefined or catastrophic
consequences for the system.

Medium
Conditions that activate the issue will result in consequences of serious
substance.

Low
Conditions that activate the issue will have outcomes on the system that are
either recoverable or do not jeopardize its regular functioning.

Warning
The issue cannot be exploited given the current code and/or configuration
(such as deployment scripts, compiler configuration, use of multi-signature
wallets for owners, etc.) but could be a security vulnerability if
these were to change slightly. If we have not found a way to exploit the
issue given the time constraints, it might be marked as "Warning" or higher,
based on our best estimate of whether it is currently exploitable.

Informational
The issue is on the borderline between code quality and security. Examples

8

https://ackeeblockchain.com

Blockchain audit | Blockchain security assessment

include insufficient logging for critical operations. Another example is that
the issue would be security-related if code or configuration (see above)
was to change.

Likelihood

High
The issue is exploitable by virtually anyone under virtually any
circumstance.

Medium
Exploiting the issue currently requires non-trivial preconditions.

Low
Exploiting the issue requires strict preconditions.

6. Findings
This section contains the list of discovered findings. Unless overridden for
purposes of readability, each finding contains:

● a Description,
● an Exploit scenario, and
● a Recommendation

Many times, there might be multiple ways to solve or alleviate the issue, with
varying requirements in terms of the necessary changes to the codebase. In
that case, we will try to enumerate them all, clarifying which solves the
underlying issue be�er (albeit possibly only with architectural changes) than
others. Issues can be also acknowledged by developers as not a risk.

9

https://ackeeblockchain.com

Blockchain audit | Blockchain security assessment

Summary of Findings

ID Type Impact Likeliho
od

Status

W1 Integer casting
overflow

Type safety N/A N/A Reported

I1 Binary search code
duplication

Architecture N/A N/A Reported

I2 Function naming
convention
violation

Best
practices

N/A N/A Reported

I3 Constant naming
convention
violation

Best
practices

N/A N/A Reported

I4 Amount signed int Type safety N/A N/A Reported

10

https://ackeeblockchain.com

Blockchain audit | Blockchain security assessment

W1 - Integer casting overflow

Impact: N/A Likelihood: N/A

Target: VotingEscrow.sol Type: Type safety

Description
Solidity >0.8 handles the integer overflow/underflow during arithmetic operations.
But in case of casting, the transaction doesn’t revert and value overflows.

Exploiting scenario
In the _deposit_for() function, we’ve identified this potential issue, but the
probability of exploiting is very low when token uses standard decimals and proper
total supply. However we have to point out this as a warning.

Oe line 309 if the _value (uint256) would be higher than int128.max, then the result
can overflow and cause mismatch.
_locked.amount += int128(int(_value));

Then on line 322, tokens get tranferred using the original uint256 _value, which
can be much higher than the overflown value.
IERC20(token).safeTransferFrom(_addr, address(this), _value);

Recommendation
Be aware of integer casting overflow and if this edge case is possible, add the
require statement to avoid it definitely.

11

https://ackeeblockchain.com

Blockchain audit | Blockchain security assessment

I1 - Binary search code duplication

Impact: N/A Likelihood: N/A

Target: VotingEscrow.sol Type: Architecture

Description
There is a code duplication of binary search algorithm. One is in the
_find_block_epoch() function and another is in balanceOfAt() function.

Recommendation
Code duplication is generally a bad practice because it makes the code more
error-prone and also becomes less readable. We recommend to make binary search
more abstract and moving it into a separate function.

12

https://ackeeblockchain.com

Blockchain audit | Blockchain security assessment

I2 - Function naming convention

Impact: N/A Likelihood: N/A

Target: VotingEscrow.sol
sVotingEscrow.sol

Type: Best practices

Description
The function naming is inconsistent, and function names with underscores violate
Solidity naming conventions. The only justifiable case for underscores is as a prefix
in internal/private functions. Inconsistent naming does not look professional from
the developer’s perspective.

Recommendation
We recommend using camelCase naming in all public/external functions and
_camelCase in private/internal functions.

13

https://ackeeblockchain.com

Blockchain audit | Blockchain security assessment

I3 - Constant naming convention

Impact: N/A Likelihood: N/A

Target: VotingEscrow.sol
sVotingEscrow.sol

Type: Best practices

Description
Some constants don’t follow the Solidity naming conventions.

int128 internal constant iMAXTIME = 3 * 365 * 86400;

string public constant name = "veSTG";

string public constant symbol = "veSTG";

string public constant version = "1.0.0";

uint8 public constant decimals = 18;

Recommendation
We recommend following the naming convetions, so using the UPPER_CASE naming
for constants for be�er readability.

14

https://ackeeblockchain.com

Blockchain audit | Blockchain security assessment

I4 - Signed integer amount

Impact: N/A Likelihood: N/A

Target: VotingEscrow.sol
sVotingEscrow.sol

Type: Type safety

Description
The amount value in the LockedBalance structure is defined as a signed integer. We
haven’t found any reason to allow the negative amount value here.

Recommendation
Use the unsigned integer data type for non-negative values like the amount.

15

https://ackeeblockchain.com

Thank You
Ackee Blockchain a.s.

Prague, Czech Republic

hello@ackeeblockchain.com

h�ps://discord.gg/z4KDUbuPxq

16

